

YEAR 12 MATHEMATICS SPECIALIST SEMESTER ONE 2019

TEST 1: Complex numbers

Thursday 7th March

Time: 25 minutes

Total marks: $\frac{1}{25} + \frac{1}{30} = \frac{1}{55}$

Calculator free section

- 1. [6 marks 2 each]
 - a) Convert each of $1 + \sqrt{3}i$ and $\sqrt{3} i$ to polar (cis) form.

b) Let
$$\omega = \frac{\left(1 + \sqrt{3}i\right)^6}{\left(\sqrt{3} - i\right)^k}$$
. Show that $\omega = 2^{6-k} \operatorname{cis}\left(\frac{k\pi}{6}\right)$.

c) For which values of k is ω purely imaginary? $(-\pi < \arg(\omega) \le \pi)$

2. [7 marks – 3 and 4]

z = a + bi represents a complex number, with a and b both real numbers.

a) Evaluate *a* and *b* if 2z + iz = 4 - 3i

b) Develop an equation relating *a* and *b* if $\operatorname{Re}\left(\frac{\overline{z}+1}{z}\right) = 1$

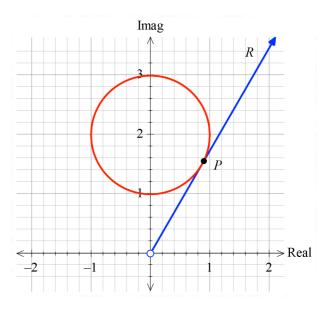
3. [6 marks – 1 each]

The unit circle shown has centre (0,2) and the ray *R* is a tangent at point *P*.

The circle represents a locus of complex numbers z and P is the complex number ω .

Determine:

(a) an equation for the circle, in terms of z



(b) *|\varnotheta*|

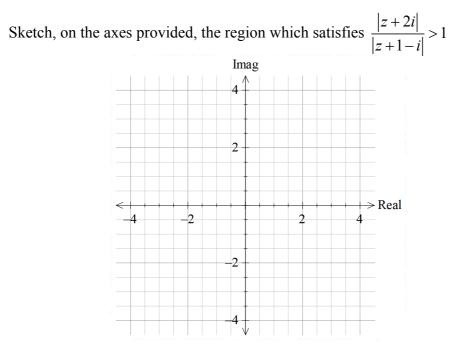
(c) $arg(\omega)$

- (d) ω expressed in Cartesian form a+bi
- (e) an equation for R, in the form $\text{Im}(z) = m \times \text{Re}(z) + c$, for Re(z) > 0

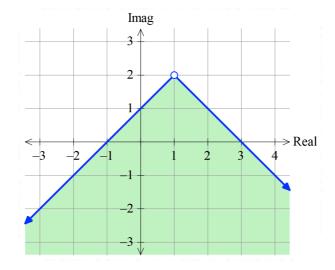
(f) the maximum value of $\arg(z)$ for the circle.

4. [6 marks – 3 each]

(a)



- (b) Use inequalities, involving the argument of a complex number, to describe the shaded region:



Time: 30 minutes

30 marks

Name:

Calculator assumed section

5. [9 marks – 1, 2, 3 and 3]

Let P(z) be a cubic polynomial with real co-efficients. It can be written as the product of a linear factor and a quadratic factor; i.e. $P(z) = (az+b)(z^2+cz+d)$ with *a*, *b*, *c* and *d* all real.

(a) z = 2 - i is a solution to P(z) = 0. Write down another solution.

(b) Hence evaluate c and d.

When P(z) is divided by (z-1) the remainder is 6 and when P(z) is divided by (z-2) the remainder is 5.

(c) Evaluate *a* and *b*.

(d) Write P(z) in expanded form (free of brackets) and hence, or otherwise, list all the zeroes of P(z).

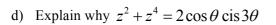
6. [8 marks – 2, 3, 2 and 1]

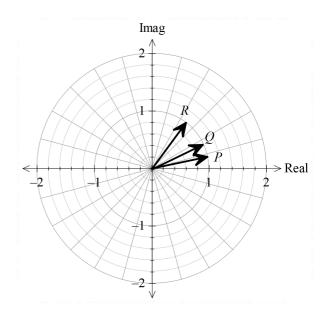
On this Argand diagram, *P* represents the complex number $z = \operatorname{cis} \theta$, for $0 \le \theta \le \frac{\pi}{2}$. Q and R represent z^2 and z^4 .

a) Add the complex number $z^2 + z^4$ to the diagram

b) Use the geometry of the situation, or otherwise, to show that $\arg(z^2 + z^4) = 3\theta$

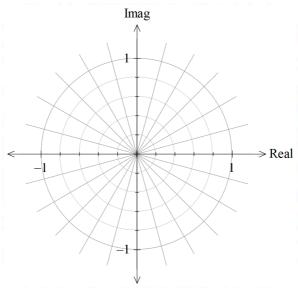
c) Prove that $\left|z^2 + z^4\right| = 2\cos\theta$





- 7. [13 marks 4, 1, 2, 1, 2 and 3]
 - a) List all the solutions to $z^5 + 1 = 0$ for $-\pi < \arg(z) \le \pi$

b) Represent these solutions as z_1 to z_5 on the Argand diagram, with z_1 in the first quadrant and z_5 in the fourth.



- c) Show that $|z_1 z_5| = 2\sin\frac{\pi}{5}$
- d) Determine an expression for the perimeter of the pentagon formed by joining the solutions to $z^5 + 1 = 0$

See over for parts e and f

e) Verify that the area of the pentagon is $\frac{5}{2}\sin\left(\frac{2\pi}{5}\right)$

f) Generalise: determine the perimeter and area of the polygon formed by the solutions to $z^n + 1 = 0$. What happens as $n \to \infty$?